INFERENCES FOR INCOMPLETELY SPECIFIED MODELS IN THE THEORY OF OUTLIERS

By
R. Khot and R.C. Jain
School of Studies in Statistics, Vikram University, Ujjain
(Received: August, 1978)

Summary

Abstract

The problem of an outlier by applying the theory of incompletely specified model in the sense of Bancraft (1964) has been discussed. The bias and mean square error of the Preliminary test estimator for testing the outlying observation have been studied. The mean square error of this estimator is compared with that of the usual unbiased estimator in the two cases according to whether the largest or the smallest observation is an outlier.

Introduction

There could be two approaches to the problem of outlying observations depending upon the interest of the scientist which may be either in testing whether a particular observation is an outlier or alternatively in obtaining a more accurate estimate of a population parameter by retaining or discarding the anamolous observation after this test. In the former case, the test for an outlier would be an end itself but in the latter case if would constitute a preliminary step for estimation of a population parameter subsequent to the outlier test. In like manner, in outlier test would also constitute a preliminary step for testing a hypothesis about a population parameter. In both these cases, the test for an outlying observation can be termed as a preliminary test. In such cases then the power and size of the subsequent test will also be important. We have discussed in this paper the problem of an outlier by applying the theory of incompletely specified model in the sense of Bancraft (1964). Further, in this problem, we study the bias and mean square error of the 'Preliminary test estimator' obtained with the help of McKay's test (1935) for testing the outlying observation. The mean square error
(MSE) of this estimator is then compared with that of the usual unbiased estimator in the two cases according to whether the largest or the smallest observation is an outlier.

Statement of the Problem

Let $X_{1}, X_{2}, \ldots, X_{n}(n>3)$ be an ordered sample in which X_{n} or X_{1} is an outlying observation for which we assume that either of the observations $X_{1}, X_{2} \ldots, X_{n-1}$ or $X_{2}, X_{3} \ldots, X_{n}$ constitute a random sample of size $n-1$ from $N\left(\mu_{1}, \sigma^{2}\right)$ and that X_{n} or X_{1} is a random sample of one from $N\left(\mu_{2}, \sigma^{2}\right)$. If $\mu_{1} \neq \mu_{2}$, then X_{n} or X_{1} belongs to a universe different from that generating the other $n-1$ observations and as such X_{n} or X_{1} will be termed an outlier. Out problem is to estimate μ_{1}. For this, we first test the hypothesis $H_{o}: \mu_{1}=\mu_{2}$ against $\mu_{1} \neq \mu_{2}$ with the help of modified form of McKay's test (1935) which when used this way can be referred to as a preliminary test in sense of Bancraft (1964).

For large samples, the possibility of having more than one outlier needs to be considered. If an observation is an outlier, consider the remaining observations as a sample of size $n-1$ and according to Ans Combe (1960) the procedure discussed above can again be applied; and so on. The estimate of μ_{1} will be the mean of the retained observations.

Rule of Procedure

For an ordered sample $X_{1}, X_{2}, \ldots, X_{n}$ of size n from a normal popu]ation with known variance σ^{2}, let

$$
\bar{X}_{n-1}=\frac{1}{n-1} \sum_{i=1}^{n-1} x_{i}, \bar{X}_{n-1}^{\prime}=\frac{1}{n-1} \sum_{i=2}^{n} x_{i}
$$

and

$$
\begin{aligned}
\bar{X} & =\frac{1}{n} \sum_{i=1}^{n} X i=\frac{1}{n}\left[(n-1) \bar{X}_{n-1}+X_{n}\right] \\
& =\frac{1}{n}\left[(n-1) \bar{X}_{n-1}^{1}+X_{1}\right]
\end{aligned}
$$

Depending then on whether X_{n} or X_{1} is an outlier, we define a random variable Z as $Z=X_{n}-\bar{X}_{n-1}$ if X_{n} is suspected to be an outlier or as $Z=X_{n-1}^{\prime}-X_{1}$ if X_{1} is suspected to be an outier.

For a pre-assigned significance level α and a critical value of the statistic Z corresponding to this significance level if $|Z| \geqslant \xi_{\alpha}$, then X_{n} or X_{1} will be considered an outlier and in that case \bar{X}_{n-1} or
$\bar{X}^{\prime}{ }_{n-1}$ is then used as an estimate of μ_{1}. Alternatively if $|Z|<\xi_{\alpha}$, then X_{n} or X_{1} will not be considered an outlier and in that case \bar{X} is then used as an estimate of μ_{1}.

The estimation procedure based on an incompletely specified model calls for determining the bias and the mean square error of the preliminary estimator \bar{X}^{*} where

$$
\bar{X}^{*}=\left\{\begin{array}{l}
\bar{X}_{n-1} \text { if } X_{n} \text { is an outlier } \\
\bar{X}_{n-1}^{\prime} \text { if } X_{1} \text { is an outlier } \\
\bar{X} \text { if neither } X_{n} \text { nor } X_{1} \text { is an outlier. }
\end{array}\right.
$$

The bias and MSE of \bar{X}^{*} are now derived for the two cases depending on whether X_{n} or X_{1} is an outlier.
Case I. (When X_{n} is an outlier)
Let $\triangle=\mu_{2}-\mu_{1}, \sigma_{Z}^{2}=\frac{n \sigma^{2}}{n-1}$ and $\sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n}$.
Since. $Z=X_{n}-X_{n-1}$, the assumption about the distributions of X_{n} and $\bar{X}_{n_{-1}}$ imply that Z is distributed as $N\left(\triangle, \sigma_{Z}^{2}\right.$ and

$$
\bar{X} \text { as } N\left[\frac{(n-1) \mu_{1}+\mu_{2}}{n}, \sigma_{\bar{X}}^{2}\right]
$$

and further that Z and \bar{X} are independent.
The expected value of \bar{X}^{*} is now given by

$$
\begin{array}{r}
E(\bar{X})^{*}=E\left[\bar{X}_{n-1}, 1 Z 1 \geqslant \xi_{\alpha}\right] P\left[1 Z 1 \geqslant \xi_{\alpha}\right]+E\left[\bar{X}, 1 Z 1<\xi_{\alpha}\right] \\
 \tag{1}\\
P\left[1 Z \mid<\xi_{\alpha}\right] . \quad \ldots(1)
\end{array}
$$

Since Z and \bar{X} are independently distributed, their joint density can be writen as

$$
\begin{align*}
f(Z, \bar{X}) & =\frac{1}{\sigma z \sqrt{2 \pi}} e^{-1 / 2}\left[\frac{Z-\triangle}{\sigma z}\right]^{2}, \\
& \frac{1}{\sigma \bar{X} \sqrt{2 \pi}} e^{-1 / 2} \sigma_{\bar{X}}^{2}\left[\bar{X}-\frac{(n-1) \mu_{1}+\mu_{2}}{n}\right]^{2} \tag{2}
\end{align*}
$$

The expressions for the second component of (1) can easily be written as

$$
E\left[\bar{X}, 1 Z 1<\xi_{\alpha}\right]=\frac{(n-1) \mu_{1}+\mu_{\mu}}{n P\left[|Z|<\xi_{\alpha}\right]}\left[\Phi\left(\delta+\xi_{\alpha}\right)-\Phi\left(\delta-\xi_{\alpha}\right)\right]
$$

where

$$
\delta=\frac{\Delta}{\sigma z}=\frac{\Delta \sqrt{n-1}}{\sigma \sqrt{n}}
$$

(9) $\cdots \quad\left[\left(x_{3}-\rho\right) \Phi-(n \xi+\rho) \Phi\right] \xlongequal[d]{\frac{I-u}{} \mu}-$

$$
\left[\left(x_{幺}-\rho\right) \Phi-\left(x_{j}+\rho\right) \Phi\right] \frac{(I-u) u \Lambda}{\rho}=\frac{\rho}{\operatorname{se!g}}
$$

(गว!

(t) $\cdots \quad[(\infty \xi-g) \Phi-(\infty)+\Omega) \Phi]+\frac{\Gamma-u \Lambda}{\partial}-$

$$
\left[\left({ }^{(5 \xi}-\rho\right) \Phi-(x \xi+\rho) \Phi\right] \frac{([-u) u \Lambda}{s}=\frac{\rho}{s \in!g}
$$

 ($\varepsilon)^{\cdots} \quad\left[\left\{\left(p_{\xi}-\rho\right) \Phi-\left({ }_{\xi} \xi+\Omega\right) \Phi\right\} \frac{\{-u \Lambda}{\rho \delta}-\right.$

 ч7!̣ [еси.

where $\rho=\frac{1}{\sqrt{n}}$ and \triangle and δ are same as defined in Case I. The $\operatorname{MSE}\left(\bar{X}^{*}\right)$ expressed as a fraction of σ^{2} is given by
$\frac{\left.\operatorname{MSE} \bar{X}^{*}\right)}{\sigma^{2}}=\frac{1}{n-1}+\frac{1}{n(n-1)}\left[\delta^{2}\left\{\Phi\left(\delta+\xi_{\alpha}\right)-\Phi\left(\delta-\xi_{\alpha}\right)\right\}-\left\{\Phi\left(\delta+\xi_{a}\right)\right.\right.$

$$
\begin{equation*}
\left.\left.-\Phi\left(\delta \quad \xi_{\alpha}\right)-\left(\delta+\xi_{\alpha}\right) \Phi\left(\delta+\xi_{\alpha}\right)+\left(\delta-\xi_{\alpha}\right) \Phi\left(\delta-\xi_{\alpha}\right)\right\}\right] \tag{7}
\end{equation*}
$$

which is same as (5) of Case I.

Discussion of Results

Here we discuss the results of bias and mean square error of the preliminary test estimator under case 1 and 2. From (4), (5), (6), and (7) it is observed that the bias and mean square error of the estimator under discussion are the functions of 3 parameters namely $\frac{\Delta}{\sigma}, n$ and α and out of which n is fixed in advance and determined by the experiment. Therefore the behaviour of bias and mean square error of the estimator is being studied for different values of α and $\frac{\Delta}{\sigma}$. The study has been made for $a=.05, .10$ and .25 and $\stackrel{\triangle}{\sigma} \geqslant 0$ since $\operatorname{Bias}\left(\frac{\triangle}{\sigma}\right)=-\operatorname{Bias}\left(-\frac{\triangle}{\sigma}\right)$ and $\operatorname{MSE}\left(\frac{\triangle}{\sigma}\right)=\operatorname{MSE}$ $\left(-\frac{\Delta}{\sigma}\right)$ in both the cases.

Tables 1 to 3 give the bias of the preliminary test estimator under case 1. The bias is zero for $\frac{\triangle}{\sigma}=0$ and at $n=24$ it tends to zero for $\alpha=.05, .10$ and .25 . It also decreases with the increase in the level of significance for fixed values of $\frac{\triangle}{\sigma}$. For $\alpha=.05$ and . 10 , the bias is maximum at $\frac{\Delta}{\sigma}=1.50$ but for $\alpha \sigma .25$ the maximum occurs at $\frac{\Delta}{\sigma}=1.25$.

Since the preliminary test estimator is in general biased and the estimator $\bar{X}_{n-1}\left(\bar{X}_{n-1}^{\prime}\right)$ is always unbiased, it seems more appropriate to talk of the relative efficiency which is defined as:

$$
\text { R. E. }=\frac{\text { MSE (Unbiased Estimator) }}{\text { MSE (Prelimınary Test Estimator) }} 100 \%
$$

Tables 4 to 6 give the different values of relative efficiency. From the tables, we observe that for $\alpha=.05, .10$ and .25 , the preliminary test estimator is more efficient over the unbiased estimator for $\frac{\Delta}{\sigma}<.75$ and becomes less efficient for $\frac{\Delta}{\sigma}>0.75$. The relative efficiency decreases with the increase in the level of significance from $\alpha \propto .05$ to 25 .
36 Journal of the indian society of agricultural statistics

\triangle			n		
	6	10	${ }^{14}$	20	${ }^{24}$
0.00	.000	.000	. 000	.000	. 000
0.25	. 29	. 17	. 13	.008	. 007
0.50	. 057	. 34	. 024	. 017	. 014
0.75	.081	.048	. 035	. 24	. 220
1.00	. 101	. 059	. 036	. 29	. 024
1.25	. 10	. 067	. 047	. 032	. 227
${ }^{1.50}$. 11	. 069	. 088	. 034	. 028
1.75	.118	. 069	. 047	. 32	. 027
${ }^{2.00}$.111	. 063	. 02	. 22	. 225
3.00	. 035	. 225	. 019	. 012	.008

		*	\%
		二	
	$=$	\pm	
		-	
		-	
	\triangleleft		

38 Journal of the indian society of agricultural statistics

$$
\begin{gathered}
\text { TABLE } 5 \\
\text { Relative Efficiency of } \mathrm{X}^{*} \text { to the unb }
\end{gathered}
$$

$=$	$\underset{\sim}{\sim}$	
	$\stackrel{\sim}{\sim}$	
	\pm	
	응	
	\bigcirc	

In the end, an indiscriminate use of the unbiased estimator (assuming that the extreme observation is outlier) is not good because it is often less efficient than the preliminary test estimator. Similarly an indiscriminate use of the estimator \bar{X} (assuming that no observation is outlier) is also not good because it gives large bias and is less efficient. From the above study we conclude that if we have a prior information that $\frac{\Delta}{\sigma}$ is small (say close to 0.75) the use of $a \leqslant .05$ is recommended for the preliminary test and the estimator will be more efficient over the unbiased estimator. If we have a prior information about $\frac{\Delta}{\sigma}>1.0$ then the use of unbiased estimator which is more efflcient over the preliminary test estimator is recommended.

Illustration

We illustrate the above procedure by using the following data due to K. Pearson (1931) which pertain to the capacities (in cubic centimeters) of 17 male Marior skulls :
$1230,1318,1380,1420,1630,1378,1348,1380,1470,1445,1360$, $1410,1540,1260,1364,1410$ and 1548.
T'o test whether the highest observation 1630 is an outlier, on assuming normality and applying the modified form of McKay's test with $\sigma=97.83$, we conclude that the largest observation 1630 is an outlier at 5% level of significance and therefore cannot be retained for the estimation of the capacities of Male Marior skulls.

Since in this example the estimate of $\frac{\triangle}{\sigma}$ is 2.37 for which the bias of the preliminary test estimator is small but this estimator is also less efficient and therefore cannot be preferred over the unbiased estimator and hence the observation 1630 is anomolous.

Acknowledgement

The authors express their sincere thanks to the Referees for valuable suggestions

References

Bancraft, T.A. (1964)	: Analysis and inference for incompletely specified models involving the use of preliminary test(s) of significance. Biometrika 20, 427-442.
McKay, A.T. (1935)	: The distribution of the difference between the extreme observation and sample mean in samples of size n from a normal Universe. Biometrika 27, 466-471.
Pearson, K. (1931)	: Tables for Statisticians and Biometricians. Part 2, Cambridge University Press.
Anscombe, F.J. (1960)	: Rejection of Outliers. Technometrics. 21 123-47.

